JOURNAL OF APPROXIMATION THEORY 48, 262-271 (1986)

Piecewise Smooth Solutions of Some Difference-Differential Equations

T. N. T. GOODMAN

Department of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland

I. J. SCHOENBERG

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.

AND

A. Sharma

Department of Mathematics, University of Alberta, Edmonton T6G 2G1, Alberta, Canada

Communicated by R. Bojanic

Received March 15, 1984

DEDICATED TO THE MEMORY OF GÉZA FREUD

1. INTRODUCTION

In this paper we consider certain difference-differential equations and look for solutions whose restriction to a given interval is a polynomial of given degree. We show that by imposing certain continuity requirements, we obtain a unique solution which coincides with a polynomial of given degree on this interval. We then show that as the degree of this polynomial tends to infinity, this solution converges to an entire function which is a solution of the given equation.

We first illustrate this procedure with a known example [5]. (For an extension of this see [4]). Let t be a complex number $t \neq 0$ or 1, arg $t \neq \pi$. Consider the functional equation

$$f(x+1) = tf(x), \quad x \in R, f(0) = 1.$$
 (1.1)

For n = 1, 2,..., it is shown in [5; see also 6], that there is a unique solution S_n of (1.1) which satisfies the following two conditions:

0021-9045/86 \$3.00 Copyright © 1986 by Academic Press, Inc. All rights of reproduction in any form reserved. 262

 S_n coincides on (0, 1) with a polynomial of degree $\leq n$, (1.2)

 $S_n \in C^{n-1}$ in a neighborhood of 0. (1.3)

We note that by (1.1), condition (1.3) implies that $S_n \in C^{n-1}(R)$. This function S_n is known as the exponential Euler spline. It is shown in [5] that for all $x \in \mathbf{R}$,

$$\lim_{n\to\infty} S_n(x) = t^x.$$

Since the function t^x is entire and satisfies (1.1), we see that the imposition of C^{n-1} continuity forces the spline solution to converge to an entire function as $n \to \infty$.

2. The Equation f(x+1) - f(x) = h(x)

Suppose h is an entire function of exponential type $A < 2\pi$, i.e., A is the infimum of all numbers γ such that

$$h(x) = O(e^{\gamma |x|}).$$
 (2.1)

or equivalently,

$$|h^{(\nu)}(0)| \leq C\gamma^{\nu}$$
 ($\nu = 0, 1, 2,...$) for some constant C. (2.2)

We shall apply the procedure described in Section 1 to the equation

$$f(x+1) - f(x) = h(x), \qquad x \in R, f(0) = 0.$$
(2.3)

The following result concerning entire solutions to (2.3) is close to that of Whittaker [7, Theorem 3, p. 22].

LEMMA 1. There is precisely one solution of (2.3) which is an entire function of exponential type $< 2\pi$. It has exponential type A and is given by

$$f(x) = \sum_{\nu=0}^{\infty} \frac{h^{(\nu)}(0)}{(\nu+1)!} \left(B_{\nu+1}(x) - B_{\nu+1} \right), \tag{2.4}$$

where $B_{\nu}(x)$ is the Bernoulli polynomial of degree ν and $B_{\nu} = B_{\nu}(0)$ is the corresponding Bernoulli number.

Proof. Choose A_1 with $A < A_1 < 2\pi$. By Hadamard's theorem applied to the generating function of Bernoulli numbers, we find that there is a constant C such that

$$\frac{|B_{\nu}|}{\nu!} \leq \frac{C}{A_{1}^{\nu}} \qquad (\nu = 1, 2, ...).$$
(2.5)

Since

$$\left|\frac{B_j(x) - B_j}{j!}\right| = \frac{1}{j!} \left|\sum_{i=1}^j \binom{j}{i} B_{j-i} x^i\right|$$
$$\leqslant \sum_{i=1}^j \frac{1}{i!} \left|\frac{B_{j-i}}{(j-i)!}\right| |x|^i,$$

it follows, on using (2.5), that

$$\left|\frac{B_j(x)-B_j}{j!}\right| \leq \frac{C}{A_1^j} e^{A_1|x|}.$$

Choosing A_2 such that $A < A_2 < A_1 < 2\pi$, we conclude from (2.2) that

$$|h^{(j)}(0)| \le C_1 A_2^j \qquad (j=0, 1,...).$$
 (2.6)

From (2.6) and (2.4), we see that for all x in R,

$$|f(x)| = \left| \sum_{j=1}^{\infty} \frac{h^{(j-1)}(0)}{j!} (B_j(x) - B_j) \right|$$

$$\leq \sum_{j=1}^{\infty} C_1 A_2^{j-1} \frac{C}{A_1^j} e^{A_1|x|}$$

$$= C_3 e^{A_1|x|} \sum_{j=1}^{\infty} \left(\frac{A_2}{A_1} \right)^j \qquad (C_3 \text{ some constant}).$$

Since A_1 can be arbitrarily close to A, we have shown that the type of f(x) is $\leq A$. If f had type < A, then by (2.3), h(x) would also have exponential type < A. Since this is not the case, f must have exponential type A. Next recalling that

$$B_{j+1}(x+1) - B_{j+1}(x) = (j+1) x^{j}, \qquad (2.7)$$

we see from (2.4) that for all $x \in R$, we have

$$f(x+1) - f(x) = \sum_{j=0}^{\infty} \frac{h^{(j)}(0)}{(j+1)!} \{ B_{j+1}(x+1) - B_{j+1}(x) \}$$
$$= \sum_{j=0}^{\infty} \frac{h^{(j)}(0)}{j!} x^{j} = h(x).$$

Since clearly f(0) = 0, f is a solution of (2.3). It remains to show that this is the only solution of (2.3) which has exponential type $< 2\pi$. This follows from a general result that the difference of two solutions of (2.3) which are of exponential type $< 2\pi$ must vanish identically. (See [1, Theorem 6.10.1, P. 109]).

264

THEOREM 1. For n = 1, 2, 3,..., there is a unique solution $S_n(x)$ of (2.3) which satisfies (1.2) and (1.3). Moreover $S_n(x) \in C^{n-1}(R)$ and converges to the function defined by (2.4) uniformly on R as $n \to \infty$.

Proof. Let $S_n(x)$ satisfying (1.2) and (1.3) be a solution of (2.3). Suppose $S_n(x)$ coincides on [0, 1) with a polynomial $P_n(x)$. Then by (2.3) we see that for $-1 \le x < 0$,

$$S_n(x) \equiv P_n(x+1) - h(x).$$

Since from (1.3), $S_n(x) \in C^{n-1}$ in a neighborhood of x = 0, we get

$$P_n^{(\nu)}(1) - h^{(\nu)}(0) = P_n^{(\nu)}(0), \qquad \nu = 0, 1, ..., n-1.$$
(2.8)

From (2.3) we also have

$$P_n(0) = 0. (2.9)$$

Clearly (2.8) and (2.9) form a nonsingular system of equations to determine $P_n(x)$. Thus (1.2) and (1.3) determine a unique solution of (2.3). Clearly (2.8) and (2.3) imply that $S_n(x) \in C^{n-1}(R)$.

We now consider the polynomial

$$Q_n(x) = \sum_{j=0}^{n-1} \frac{h^{(j)}(0)}{(j+1)!} \left(B_{j+1}(x) - B_{j+1} \right)$$
(2.10)

which, because of (2.7), satisfies

$$Q_n(x+1) - Q_n(x) = \sum_{j=0}^{n-1} \frac{h^{(j)}(0)}{j!} x^j, \qquad x \in R.$$
(2.11)

Hence

$$Q_n^{(\nu)}(1) - Q_n^{(\nu)}(0) = h^{(\nu)}(0), \qquad \nu = 0, 1, ..., n-1.$$
(2.12)

Since from (2.10), $Q_n(0) = 0$, a comparison of (2.8) and (2.9) shows that $Q_n(x) = P_n(x)$.

Comparing (2.10) and (2.4) shows that $Q_n(x)$ converges uniformly in [0, 1] to f, i.e., $S_n(x)$ converges uniformly to f(x) on [0, 1]. Since f(x) and $S_n(x)$ both satisfy (2.3), we get

$$f(x+1) - S_n(x+1) = f(x) - S_n(x), \quad x \in \mathbb{R}$$

and so $S_n(x)$ converges uniformly to f(x) on R.

3. A GENERAL LINEAR DIFFERENCE-DIFFERENTIAL EQUATION

We shall denote by \mathscr{F} the space of entire functions f such that $\{f^{(j)}(0)\}_{j=0}^{\infty} \in l_2$. If f is an entire function of exponential type <1, then $f \in \mathscr{F}$. If $f \in \mathscr{F}$, then f is of exponential type ≤ 1 . For any given function $h(x) \in \mathscr{F}$ and given complex numbers $\lambda_1, ..., \lambda_p, \mu_1, ..., \mu_q$ with $\lambda_p \mu_q \neq 0$, we shall apply our procedure to the equation

$$\sum_{i=0}^{p} \mu_i f^{(i)}(x+1) = \sum_{i=0}^{q} \lambda_i f^{(i)}(x) + h(x), \qquad x \in \mathbb{R}, f(0) = 1.$$
(3.1)

The key tool will be the following result which is taken from Theorem 7.1 (Sect. 1) and Theorem 2.1 of Chapter 3 of [2].

THEOREM A (Gokhberg and Feldman[2]). Let a(z) be an arbitrary function continuous on the unit circle and a_j $(j=0, \pm 1,...)$ its Fourier coefficients. Let the operator $A: l_2 \rightarrow l_2$ be defined by

$$(Ab)_j = \sum_{k=1}^{\infty} a_{j-k} b_k$$
 $j = 1, 2, ...; b = \{b_j\}_1^{\infty} \in I_2.$

Then A is invertible if and only if

$$a(z) \neq 0$$
 for $|z| = 1$, (3.2)

ind
$$a := \frac{1}{2\pi} \arg a(e^{i\theta})]_0^{2\pi} = 0.$$
 (3.3)

Moreover, if (3.2) and (3.3) are satisfied, then the following holds: The system of equations

$$\sum_{k=1}^{n} a_{j-k} \zeta_{k}^{(n)} = \eta_{j}, \qquad j = 1, ..., n$$
(3.4)

is nonsingular for all large enough n. If $\{\eta_i\}_{i=1}^{\infty} \in I_2$, $\{\xi_k^{(n)}\}_{k=1}^n$ denotes the solution of (3.4) and if $\xi^{(n)} := \{\xi_1^{(n)}, \dots, \xi_n^{(n)}, 0\dots\}$, then $\xi^{(n)}$ converges in I_2 to the unique solution $\xi := \{\xi_i\}_{i=1}^{\infty} \in I_2$ of the infinite system of equations

$$\sum_{k=1}^{\infty} a_{j-k} \xi_k = \eta_j \qquad (j = 1, 2, ...).$$
(3.5)

We shall now prove

THEOREM 2. Suppose the function

$$a(z) := e^{z} \sum_{i=0}^{p} \mu_{i} z^{i-1} - \sum_{i=0}^{q} \lambda_{i} z^{i-1}$$
(3.6)

satisfies conditions (3.2) and (3.3) of Theorem A. Then for large enough n, there is a unique solution $S_n(x)$ of (3.1) which satisfies the conditions (1.2) and also

$$S_n(x) \in C^{n-1+q}$$
 in a neighbourhood of 0, (3.6a)

$$S_n(x) \in C^{p-1}$$
 in $(0, \infty)$, (3.7)

$$S_n(x) \in C^{q-1}$$
 in $(-\infty, 0)$. (3.8)

Moreover, there is a unique solution f(x) of (3.1) in \mathfrak{F} and for all $x \in \mathbb{R}$, $S_n(x) \to f(x)$ as $n \to \infty$.

Proof. Suppose $S_n(x)$ coincides on (0, 1) with a polynomial $P_n(x)$, where

$$P_n(x) = 1 + b_1^{(n)}x + \frac{b_2^{(n)}}{2!}x^2 + \dots + \frac{b_n^{(n)}x^n}{n!}.$$
(3.9)

Suppose moreover that $S_n(x)$ also satisfies (1.3), (3.7), and (3.8) and is a solution of (3.1). Then by (3.1) we see that for $-1 \le x \le 0$,

$$\sum_{i=0}^{q} \lambda_i S_n^{(i)}(x) = \sum_{i=0}^{p} \mu_i P_n^{(i)}(x+1) - h(x).$$

Differentiating v times and letting $x \rightarrow 0^-$, gives

$$\sum_{i=0}^{q} \lambda_i S_n^{(i+\nu)}(0^-) = \sum_{i=1}^{p} \mu_i P_n^{(i+\nu)}(1) - h^{(\nu)}(0), \qquad \nu = 0, 1, ..., n-1.$$

Since $S_n(x) \in C^{n-1+q}$ in a neighborhood of 0, this is equivalent to

$$\sum_{i=0}^{p} \mu_i P_n^{(i+\nu)}(1) - h^{(\nu)}(0) = \sum_{i=0}^{q} \lambda_i P_n^{(i+\nu)}(0) \qquad (\nu = 0, ..., n-1). \quad (3.10)$$

Substituting (3.9) into (3.10) and adopting the usual convention that the reciprocal of the factorial of a negative integer is zero, we obtain the following system of n equations (v = 0, 1, ..., n - 1):

$$\sum_{k=1}^{n} b_{k}^{(n)} \sum_{i=0}^{p} \frac{\mu_{i}}{(k-i-\nu)!} - \sum_{i=0}^{q} \lambda_{i} b_{i+\nu}^{(n)} = h^{(\nu)}(0) + \alpha_{\nu}, \qquad (3.11)$$

where

$$\begin{aligned} \alpha_v &= \lambda_0 - \mu_0, \qquad v = 0, \\ &= 0, \qquad v > 0. \end{aligned}$$

The system (3.11) can be written as

$$\sum_{k=1}^{n} a_{j-k} b_k^{(n)} = h^{(j-1)}(0) + \alpha_{j-1}, \qquad j = 1, ..., n,$$
(3.12)

where

$$a_{l} = \sum_{i=0}^{p} \frac{\mu_{i}}{(1-l-i)!} - \sum_{i=0}^{q} \lambda_{i} \delta_{i,1-i}, \qquad l \in \mathbb{Z}.$$
 (3.13)

Comparing with (3.4) and applying the first part of Theorem A shows that the system (3.12) is nonsingular for large enough *n* provided conditions (3.2) and (3.3) of Theorem A are satisfied. Thus there is a unique polynomial $P_n(x)$ satisfying (3.10) and so conditions (1.2) and (3.6a) determine the solution $S_n(x)$ uniquely on [0, 1). Applying (3.1) and condition (3.7), we can extend $S_n(x)$ uniquely to a solution on $(0, \infty)$. Similarly applying (3.1) and condition (3.8), $S_n(x)$ can be extended to a solution on $(-\infty, 0)$.

By an argument similar to the above we see that an entire function

$$f(x) = 1 + \sum_{k=1}^{\infty} b_k x^k / k!$$
(3.14)

is a solution of (3.1) if and only if

$$\sum_{k=1}^{\infty} a_{j-k} b_k = h^{(j-1)}(0) + \alpha_{j-1}, \qquad (j=1, 2, ...),$$
(3.15)

where a_l is given by (3.13).

By Theorem A we know that there is a unique solution $\mathbf{b} = \{b_k\}_1^\infty$ of (3.15) with $\{b_k\}_1^\infty \in l_2$, and thus there is a unique solution $f \in \mathscr{F}$ of (3.1). Again, by Theorem A we know that $\mathbf{b}^{(n)} := \{b_1^{(n)}, \dots, b_n^{(n)}, 0, 0, \dots\}$ converges in l_2 to **b**. Now for $x \in R$,

$$|f(x) - P_n(x)| = \left| \sum_{k=1}^{\infty} (b_k - b_k^{(n)}) \frac{x^k}{k!} \right|$$

$$\leq \|\mathbf{b} - \mathbf{b}^{(n)}\|_2 \left\| \left\{ \frac{x^k}{k!} \right\}_1^{\infty} \right\|_2$$

and so $f(x) - P_n(x) \to 0$ as $n \to \infty$.

We have thus shown that $S_n(x) \to f(x)$ as $n \to \infty$ for x in [0, 1) and applying (3.1) shows that $S_n(x) \to f(x)$ as $n \to \infty$ for all x in R.

Remark. We note that Eqs. (1.1) and (2.3) are special cases of (3.1). However the results mentioned in Section 1 cannot be deduced from Theorem 2 because in this case the function $a(z) = (e^z - t)/z$ does not satisfy conditions (3.2) and (3.3) of Theorem A for all values of t. Similarly the results of Section 2 cannot be deduced from Theorem 2 because the conditions on h(x) are weaker.

4. AN EXAMPLE

We now consider the particular equation

$$f(x) = f'(x+1), \quad x \in R, f(0) = 1$$
 (4.1)

as an illustration of Theorem 2 because the solution in this case has an interesting form. The function a(z) given by (3.6) is in this case

$$a(z) = e^{z} - z^{-1}.$$
 (4.2)

Now Im $a(e^{i\theta}) = e^{\cos\theta} \sin(\sin\theta) + \sin\theta > 0$ for $0 < \theta < \pi$. Since $a(e^{i\theta})$ is real and positive for $\theta = 0$ and π , we see that $a(e^{i\theta}) \neq 0$ for $0 < \theta < \pi$ and arg $a(e^{i\theta})]_0^{\pi} = 0$. Similarly, $a(e^{i\theta}) \neq 0$ for $\pi \le \theta \le 2\pi$ and $\arg a(e^{i\theta})]_{\pi}^{2\pi} = 0$. Thus a(z) satisfies conditions (3.2) and (3.3) of Theorem A and we can apply Theorem 2. It is easily seen that a solution f of (4.1) which lies in \mathscr{F} is $f(x) = e^{\lambda x}$, where $1 = \lambda e^{\lambda}$ (In fact $\lambda \approx 0.5671432904$.). Thus Theorem 2 tells us that

$$\lim_{n \to \infty} S_n(x) = e^{\lambda x}, \qquad x \in \mathbb{R}.$$

We now find an explicit expression for the spline $S_n(x)$. In this case, Eq. (3.3) becomes

$$P_n^{(\nu+1)}(1) = P_n^{(\nu)}(0) \qquad (\nu = 0, 1, ..., n-1).$$
(4.3)

It is easily checked that for $n \ge 0$, this is satisfied by

$$P_n(x) = \sum_{j=0}^n \frac{(x+n-j)^j}{j!}.$$
(4.4)

Since we must have $S_n(0) = 1$, (4.4) yields

$$S_n(x) = \gamma_n P_n(x), \qquad 0 \le x \le 1, \tag{4.5}$$

where

$$\gamma_n^{-1} = \sum_{j=0}^n \frac{(n-j)^j}{j!}.$$
(4.6)

We now extend $S_n(x)$ uniquely to [-1, 0) by applying condition (4.1). Thus

$$S_n(x) = S'_n(x+1) = \gamma_n P'_n(x+1) = \gamma_n P_{n-1}(x+1), \qquad -1 \le x < 0.$$

Similarly we extend $S_n(x)$ uniquely to [1, 2) by applying (4.1) and condition (3.7) of Theorem 2:

$$S'_{n}(x) = S_{n}(x-1) = \gamma_{n}P_{n}(x-1), \qquad 1 \le x < 2$$

$$S_{n}(1) = \gamma_{n}P_{n}(1) = \gamma_{n}P'_{n+1}(1) = \gamma_{n}P_{n+1}(0).$$
(4.7)

We easily see that (4.7) is satisfied by

$$S_n(x) = \gamma_n P_{n+1}(x-1), \qquad 1 \le x < 2.$$

In this way we see by successive extensions to the right and to the left that

$$S_n(x) = \gamma_n P_{n+\nu}(x-\nu), \quad \nu \le x < \nu+1, \, \nu \in \mathbb{Z},$$
 (4.8)

where $P_{\mu} \equiv 0$ for $\mu < 0$. A more compact and neat expression for $S_n(x)$ is given by

$$S_n(x) = \gamma_n \sum_{\nu=0}^{\infty} \frac{(x+n-\nu)_+^{\nu}}{\nu!} = \gamma_n S_0(x+n),$$
(4.9)

where $S_0(x) = \sum_{\nu=0}^{\infty} (x - \nu)_+^{\nu} / \nu!$.

5. A CONJECTURE

We close this note by mentioning the nonlinear equation

$$f(x) = xf(x+1), \quad x \in R, f(1) = 1,$$
 (5.1)

which is satisfied by the entire function $f(x) = 1/\Gamma(x)$. It is shown in [3] that for n = 1, 2,..., there is a unique solution $S_n(x)$ of (5.1) satisfying (1.2) and (1.3). We offer the following

Conjecture. For all $x \in R$, $S_n(x) \to 1/\Gamma(x)$ as $n \to \infty$. We remark that writing

$$S_n(x) = x + \frac{b_2^{(n)}}{2!} x^2 + \dots + \frac{b_n^{(n)} x^n}{n!}, \qquad 0 \le x \le 1,$$

270

the coefficients $b_2^{(n)}, ..., b_n^{(n)}$ are the unique solution of the system of equations

$$\sum_{j=2}^{n} \left\{ \frac{1}{(j-k)!} - \frac{1}{k+1} \,\delta_{j-k,1} \right\} \, b_{j}^{(n)} = -\delta_{k,1}, \qquad k = 0, \, 1, \dots, \, n-2.$$

which is very similar to the system of equations (3.4) in Theorem A. The validity of this conjecture would imply that as $n \to \infty$, $\frac{1}{2} b_2^{(n)} \to \gamma$, the Euler constant, a fact which is strongly supported by numerical evidence. For further details on this conjecture see [3].

ACKNOWLEDGMENT

The authors would like to thank Professor Carl de Boor for suggesting to them the relevance of Theorem A to their problems.

References

- 1. R. P. BOAS, JR. "Entire Functions," Academic Press, New York, 1954.
- I. C. GOHBERG AND I. A. FELDMAN, "Convolution Equations and Projection Methods for Their Solution," Trans. Math. Monographs Vol. 41, Amer. Math. Soc., Providence, R.I., 1974.
- 3. T. N. T. GOODMAN, I. J. SCHOENBERG, AND A. SHARMA, "High Order Continuity Implies Good Approximations to Solutions of Certain Functional Equations," Mathematics Research Center Report No. 2296, University of Wisconsin, 1981.
- 4. T. N. E. GREVILLE, I. J. SCHOENBERG, AND A. SHARMA, The spline interpolation of sequences satisfying a linear recurrence relation, J. Approx. Theory 17 (1976), 200-221.
- 5. I. J. SCHOENBERG, Cardinal interpolation and spline functions IV. The exponential Euler splines, in "Linear Operators and Approximation," Vol. 1, P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy, Editors, Birkhäuser, Basel, 1972, pp. 382–404.
- 6. I. J. SCHOENBERG, A new approach to Euler splines (dedicated to L. Euler on his bicentenial, 1983), to appear.
- 7. J. M. WHITTAKER, "Interpolatory Function Theory," Cambridge Univ. Press, London, 1935.