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1. INTRODUCTION

In this paper we consider certain difference-differential equations and
look for solutions whose restriction to a given interval is a polynomial of
given degree. We show that by imposing certain continuity requirements,
we obtain a unique solution which coincides with a polynomial of given
degree on this interval. We then show that as the degree of this polynomial
tends to infinity, this solution converges to an entire function which is a
solution of the given equation.

We first illustrate this procedure with a known example [5]. (For an
extension of this see [4]). Let t be a complex number t # 0 or 1, arg t # n.
Consider the functional equation

f(x + 1) = tf(x), X E R,j(O) = 1. (1.1 )

For n = 1, 2,... , it is shown in [5; see also 6], that there is a unique solution
Sn of (1.1) which satisfies the following two conditions:
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Sn coincides on (0,1) with a polynomial of degree ~n, (1.2)

Sn E c- 1 in a neighborhood of 0. (1.3 )

We note that by (1.1), condition (1.3) implies that SnEC-1(R). This
function Sn is known as the exponential Euler spline. It is shown in [5]
that for all x E R,

Since the function t X is entire and satisfies (1.1), we see that the imposition
of en - 1 continuity forces the spline solution to converge to an entire
function as n ~ 00.

2. THE EQUATION f(x + 1) - f(x) = h(x)

Suppose h is an entire function of exponential type A < 2n, i.e., A is the
infimum of all numbers y such that

h(x) = O(eY IXI).

or equivalently,

(2.1 )

(v = 0, 1, 2, ... ) for some constant C. (2.2 )

We shall apply the procedure described in Section 1 to the equation

f(x + 1) - f(x) = h(x), X E R,j(O) = 0. (2.3 )

The following result concerning entire solutions to (2.3) is close to that of
Whittaker [7, Theorem 3, p. 22].

LEMMA 1. There is precisely one solution of (2.3) which is an entire
function of exponential type < 2n. It has exponential type A and is given by

(2.4 )

where BAx) is the Bernoulli polynomial of degree v and B v = Bv(O) is the
corresponding Bernoulli number.

Proof Choose A 1 with A < A 1 < 2n. By Hadamard's theorem applied
to the generating function of Bernoulli numbers, we find that there is a
constant e such that

(v = 1, 2, ... ). (2.5 )
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IBix) - Bjl =.!-I f (J) BXil
Of 0' L. ° i-I

Jo J. i~ I 1

f 1 I Bj
_

i I i~ L. -:;- -(0_ ')' lxi,
i~ I 1. J 1.

it follows, on using (2.5), that

I
Bj(X)-Bjl ~E Allxl

'f '" Aj e .J. I

Choosing A 2 such that A < A 2 < Al < 2n, we conclude from (2.2) that

(j=O,l, ... ). (2.6)

From (2.6) and (2.4), we see that for all x in R,

(C3 some constant).

Since Al can be arbitrarily close to A, we have shown that the type of/(x)
is ~ A. If1 had type < A, then by (2.3), h(x) would also have exponential
type < A. Since this is not the case, 1 must have exponential type A. Next
recalling that

(2.7)

we see from (2.4) that for all x E R, we have

00 hUJ(O)
l(x+l)-/(X)=j~o(j+l)! {Bj + 1(x+l)-Bj + 1(x)}

00 hU)(O) .
= I -.,-xi=h(x).

j=O J.

Since clearly1(0) = O,fis a solution of (2.3). It remains to show that this is
the only solution of (2.3) which has exponential type < 2n. This follows
from a general result that the difference of two solutions of (2.3) which are
of exponential type <2n must vanish identically. (See [1, Theorem 6.10.1,
P.109]).
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THEOREM 1. For n = 1, 2, 3,..., there is a unique solution Sn(x) of (2.3)
which satisfies (1.2) and (1.3). Moreover Sn(x)EC- 1(R) and converges to
the function defined by (2.4) uniformly on R as n -+ 00.

Proof Let Sn(x) satisfying (1.2) and (1.3) be a solution of (2.3). Sup
pose Sn(x) coincides on [0,1) with a polynomial Pn(x). Then by (2.3) we
see that for - 1~ x < 0,

Since from (1.3), Sn(x) E C - I in a neighborhood of x = 0, we get

v = 0, 1,..., n - 1. (2.8)

From (2.3) we also have

PAO)=O. (2.9)

Clearly (2.8) and (2.9) form a nonsingular system of equations to deter
mine Pn(x). Thus (1.2) and (1.3) determine a unique solution of (2.3).
Clearly (2.8) and (2.3) imply that Sn(X)EC-1(R).

We now consider the polynomial

which, because of (2.7), satisfies

(2.10)

Hence

XER. (2.11 )

v = 0, I, ... , n -1. (2.12 )

Since from (2.10), Qn(O)=O, a comparison of (2.8) and (2.9) shows that
Qn(x) = Pn(x).

Comparing (2.10) and (2.4) shows that Qn(x) converges uniformly in
[0,1] tof, i.e., Sn(x) converges uniformly tof(x) on [0,1]. Sincef(x) and
Sn(x) both satisfy (2.3), we get

f(x+ 1)-Sn(x+ I)=f(x)-Sn(x), XER

and so SAx) converges uniformly to f(x) on R. I

640/48/3-2
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3. A GENERAL LINEAR DIFFERENCE-DIFFERENTIAL EQUATION

We shall denote by :F the space of entire functions f such that
{J(j)(O)}T';'oE/2 • If f is an entire function of exponential type <1, then
fE ff. If fE:F, then f is of exponential type ~ 1. For any given function
h(x) E:F and given complex numbers 1. 1"", Ap, Jil ,..., Ji q with ApJiq # 0, we
shall apply our procedure to the equation

p q

L JiJU)(x+ 1)= L )o;P')(x)+h(x), X E R,j(O) = 1. (3.1 )
;=0 i=O

The key tool will be the following result which is taken from Theorem 7.1
(Sect. 1) and Theorem 2.1 of Chapter 3 of [2].

THEOREM A (Gokhberg and Feldman[2]). Let a(z) he an arbitrary
function continuous on the unit circle and aj (j = 0, ± 1,... ) its Fourier coef
ficients. Let the operator A: 12-+ 12 be defined by

x

(Abt = L aj_kbk
k~l

Then A is invertible if and only if
a(z) #0

j = 1, 2, ... ; b = {bJ f E 12 ,

for Izi = 1, (3.2)

ind a: = 2
1
n arg a(e iO )]6" = o. (3.3 )

Moreover, if (3.2) and (3.3) are satisfied, then the following holds: The
system of equations

n

L ai_k~in) = Yfj,
k~1

j= 1,..., n (3.4 )

is nonsingular for all large enough n. If {YfJfE/2, gin)}Z~1 denotes the
solution of (3.4) and if ~In): = {~\n) ,... , ~~n), O... }, then ~In) converges in 12 to
the unique solution ~: = {~j};: 1 E 12 of the infinite system of equations

x

L aj-k~k=Yfj
k~)

We shall now prove

THEOREM 2. Suppose the function

(j= 1, 2, ... ). (3.5)

p q

a(z):= eZ L JiiZ;-1 - L A;zi-I
1=0 i=O

(3.6)
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satisfies conditions (3.2) and (3.3) of Theorem A. Then for large enough n,
there is a unique solution Sn( x) of (3.1) which satisfies the conditions (1.2)
and also

Sn(X)ECn- 1 + Q

Sn(x) E e- I

Sn(x) E C- I

in a neighbourhood of 0,

in (0, 00),

in(-oo,O).

(3.6a)

(3.7)

(3.8 )

Moreover, there is a unique solution f(x) of (3.1) in !j and for all
XE R, Sn(x) ~ f(x) as n ~ 00.

Proof Suppose Sn(x) coincides on (0, 1) with a polynomial Pn(x),
where

b(n) b(nj x n
P (x) = 1+ b(n)x+ _2_ X2 + ... + _n__.

n I 2! n!
(3.9)

Suppose moreover that Sn(x) also satisfies (1.3), (3.7), and (3.8) and is a
solution of (3.1). Then by (3.1) we see that for - 1 ,,; x ,,; 0,

Q p

L A;S~i)(X)= L /liP~)(X+ 1)-h(x).
i~O i~O

Differentiating v times and letting x ~°-, gives

v = 0, 1'00" n - 1.
;=0 ;=1

Since Sn(X)EC- I + q in a neighborhood of 0, this is equivalent to

p q

L /lip~i+v)(l)-h(v)(O)= L )"iP~i+V)(O)

i~O i~O

(v = 0'00" n - 1). (3.10)

Substituting (3.9) into (3.10) and adopting the usual convention that the
reciprocal of the factorial of a negative integer is zero, we obtain the follow
ing system of n equations (v = 0, 1'00" n - 1):

~ b(n) f /li _ f )..bln ) = h(V)(O) + iJ( (3.11)
L. k L. (k-i-v)! .L. I I+V V'
k~ I i~O ,~O

where

=0, v>O.
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The system (3.11) can be written as

n

~ a.. bIn) = hU- 1)(0) + !X..L, I-k k I-I'
k~1

where

j= 1,... , n,

lEZ.

(3.12 )

(3.13)

Comparing with (3.4) and applying the first part of Theorem A shows that
the system (3.12) is nonsingular for large enough n provided conditions
(3.2) and (3.3) of Theorem A are satisfied. Thus there is a unique
polynomial Pn(x) satisfying (3.10) and so conditions (1.2) and (3.6a) deter
mine the solution Sn(x) uniquely on [0, 1). Applying (3.1) and condition
(3.7), we can extend Sn(x) uniquely to a solution on (0, (JJ). Similarly
applying (3.1) and condition (3.8), Sn(x) can be extended to a solution on
(-00,0).

By an argument similar to the above we see that an entire function

Xc

f(x) = 1+ L bkxkjk!
k=l

is a solution of (3.1) if and only if

(j= 1, 2, ... ),

(3.14 )

(3.15)

where at is given by (3.13).
By Theorem A we know that there is a unique solution b = {bd r of

(3.15) with {bdrEI2, and thus there is a unique solutionfEff of (3.1).
Again, by Theorem A we know that b(n): = {bIn) ,..., b~n), 0, O,... } converges
in 12 to b. Now for xER,

and so f(x)- Pn(x) ---+ 0 as n ---+ 00.
We have thus shown that Sn(x) ---+ f(x) as n ---+ (JJ for x in [0, 1) and

applying (3.1) shows that Sn(x) ---+ f(x) as n ---> (JJ for all x in R. I
Remark. We note that Eqs. (1.1) and (2.3) are special cases of (3.1).

However the results mentioned in Section 1 cannot be deduced from
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Theorem 2 because in this case the function a(z) = (e Z
- t)/z does not

satisfy conditions (3.2) and (3.3) of Theorem A for all values of t. Similarly
the results of Section 2 cannot be deduced from Theorem 2 because the
conditions on h(x) are weaker.

4. AN EXAMPLE

We now consider the particular equation

f(x) =f'(x + 1), X E R,f(O) = 1 (4.1 )

as an illustration of Theorem 2 because the solution in this case has an
interesting form. The function a(z) given by (3.6) is in this case

(4.2)

Now 1m a(eiB )= ecosBsin(sin 8) + sin 8> 0 for 0 < e< n. Since a(eiB ) is
real and positive for e= 0 and n, we see that a(eiB ) # 0 for 0 < 8 < nand arg
a(eiB)]o=O. Similarly, a(eiB)#O for n~8~2n and arg a(e iB

)];" =0. Thus
a(z) satisfies conditions (3.2) and (3.3) of Theorem A and we can apply
Theorem 2. It is easily seen that a solution f of (4.1) which lies in g;
isf(x) = eAX, where 1 = AeA (In fact A~0.5671432904.). Thus Theorem 2 tells
us that

lim Sn(x)=e;X, XER.
n_ x

We now find an explicit expression for the spline Sn(x), In this case,
Eq. (3.3) becomes

(v = 0, 1,..., n - 1). (4.3 )

It is easily checked that for n ? 0, this is satisfied by

Since we must have Sn(O)= 1, (4.4) yields

(4.4 )

O~x~ 1, (4.5 )

where

-1_ ~ (n-jY
'In - 1... -.-,-.

j~O ).

(4.6)
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We now extend Sn(x) uniquely to [-1,0) by applying condition (4.1).
Thus

-1 ~x<O.

Similarly we extend Sn(x) uniquely to [1,2) by applying (4.1) and con
dition (3.7) of Theorem 2:

S~(x) = Sn(x-1) = YnPn(x-1), 1~ x < 2

Sn(l) = YnP n(1) = YnP~ + 1(1) = YnPn+ 1(0). (4.7)

We easily see that (4.7) is satisfied by

1~x< 2.

In this way we see by successive extensions to the right and to the left
that

v ~ x < v + 1, V E Z, (4.8)

where PI' == 0 for .u < O. A more compact and neat expression for Sn(x) is
given by

(4.9)

5. A CONJECTURE

We close this note by mentioning the nonlinear equation

f(x) = xf(x + 1), xER,f(l)= 1, (5.1 )

which is satisfied by the entire function f(x) = 1/nx). It is shown in [3J
that for n = 1, 2, ..., there is a unique solution Sn(x) of (5.1) satisfying (1.2)
and (1.3 ). We offer the following

Conjecture. For all xER,Sn(x)~llr(x) as n~oo. We remark that
writing

o~x~ 1,
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k = 0, 1,..., n - 2.

the coefficients b}n l , ..., b~n) are the unique solution of the system of
equations

it {(j~k)!-k~1 15j_k.1}W
J
= -15k,I'

which is very similar to the system of equations (3.4) in Theorem A. The
validity of this conjecture would imply that as n -4 00, ! b}n J -4 y, the Euler
constant, a fact which is strongly supported by numerical evidence. For
further details on this conjecture see [3].

ACKNOWLEDGMENT

The authors would like to thank Professor Carl de Boor for suggesting to them the
relevance of Theorem A to their problems.

REFERENCES

1. R. P. BOAS, JR. "Entire Functions," Academic Press, New York, 1954.
2. I. C. GOHBERG AND I. A. FELDMAN, "Convolution Equations and Projection Methods for

Their Solution," Trans. Math. Monographs Vol. 41, Amer. Math. Soc., Providence, R.I.,
1974.

3. T. N. T. GOODMAN, I. J. SCHOENBERG, AND A. SHARMA, "High Order Continuity Implies
Good Approximations to Solutions of Certain Functional Equations," Mathematics
Research Center Report No. 2296, University of Wisconsin, 1981.

4. T. N. E. GREVILLE, I. 1. SCHOENBERG, AND A. SHARMA, The spline interpolation of sequen
ces satisfying a linear recurrence relation, J. Approx. Theory 17 (1976), 200-221.

5. I. J. SCHOENBERG, Cardinal interpolation and spline functions IV. The exponential Euler
splines, in "Linear Operators and Approximation," Vol. I, P. L. Butzer, J.-P. Kahane and
B. Sz.-Nagy, Editors, Birkhauser, Basel, 1972, pp. 382-404.

6. 1. J. SCHOENBERG, A new approach to Euler splines (dedicated to L. Euler on his bicen
tenial, 1983), to appear.

7. J. M. WHITTAKER, "Interpolatory Function Theory," Cambridge Univ. Press, London,
1935.


